Riemann solitons on Lorentzian generalized symmetric spaces
Main Article Content
Abstract
proved which of them is the gradient soliton. Also, we prove none of the potential vector fields of Riemann solitons are Killing vector fields.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
M. M. Akbar and E. Woolgar, Ricci solitons and Einstein-Scalar field theory, Classical Quantum Gravity, 26(5) (2009), 055015, 14pp.
S. Azami, U. C. De, Ricci bi-conformal vector fields on Lorentzian four-dimensional generalized symmetric spaces, Filomat, 38(4) (2024), 3157-3164.
S. Azami, and U. C. De, Ricci bi-conformal vector fields on Lorentzian five-dimensional twostep nilpotent Lie groups, Hacet. J. Math. Stat. (2023), 10.15672/hujms.1294973. Wesley.
(2004), 133-139.
S. Azami, and G. Fasihi-Ramandi, Ricci bi-conformal vector fields on Siklos spacetimes,
Mathematics. Interdisciplinary research, 9 (1) (2024), 45-76.
S. Azami, and M. Jafari, Ricci bi-conformal vector fields on homogeneous Godel-type spacetimes, J. nonlinear Math. Phys. 30(2023), 1700-1718.
S. Azami and M. Jafari, Ricci solitons and Ricci bi-conformal vector fields on the Lie group
H2 × R, Report on mathematical physics, 93(2) (2024), 231-239.
P. Baird and L. Danielo, Three-dimensional Ricci solitons whichproject to surfaces, J. Reine
Angew. Math., 608 (2007), 65-91.
M.R. Bakshi, K. K. Baishya, Four classes of Riemann solitons on α-cosymplectic manifolds,
Afr. Mat., 32 (2020), 577-588.
W. Batat and K. Onda, Four-dimensional pseudo-Riemannian generalized symmetric spaces
which are algebraic Ricci solitons, Results Math., 64(2013), 253-267.
G.G. Biswas, X. Chen, U. C. De, Riemann solitons on almost co-Kähler manifolds, Filomat,
(4) (2022), 1403-1413.
A.M. Blaga, Remarks on almost Riemann solitons with gradient or torse-forming vector field.
Bulletin of the Malaysian Mathematical Sciences Society, 44 (2020), 3215 - 3227.
A. Bouharis and B. Djebbar, Ricci solitons on Lorentzian four-dimensional generalized symmetric spaces, Journal of mathematical physics, analysis, geometry, 14(2) (2018), 132-140.
M. Brozes-Vázquez, G. Calvaruso, E. García-Rio and S. Gavino-Fernándz, Three-dimensional
Lorentzian homogeneous Ricci solitons, Israel J. Math., 188(2012), 385-403.
M. Brozos-Vazquez , E. Garcia-Rio , and S. Gavino-Fernandez, Locally conformally flat
Lorentzian gradient Ricci solitons, J. Geom. Anal. 23(2013), 1196-1212.
M. Brozos-Vazquez, E. Garcia-Rio, P. Gilkey, S. Nikcevic, and R. Vazquez-Lorenzo, The
Geometry of Walker Manifolds, Vol. 5 of Synthesis Lectures on Mathematics and Statics
(Morgan and Claypool, San Rafael, CA, 2009).
C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu
manifolds, Bull. Malays. Math. Soc. 33(3) (2010) 361-368.
G. Calvaruso, Homogeneous structures on three-dimensional homogeneous Lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279-1291.
G. Calvaruso, Symplectic, complex and Kähler structures on four-dimensional generalized
symmetric spaces, Differential geometry and its applications, 29(2011), 758-769.
G. Calvaruso, Harmonicity of invariant vector fields on four-dimensional generalized symmetric spaces, Center. Eur. J. Math., 10(2012), 411-425.
G. Calvaruso and B. De Leo, Curvature properties of four-dimensional generalized symmetric
spaces, J. Geom., 90 (2008), 30-46.
U. Camci, H. Baysal, I. Tarhan, I. Yilmaz and I. Yavuz, Ricci collineations of the Bianchi
type I and III, and Kantowski-Saches spacetimes, Int. J. Modern Physics D, 10 (5)(2001),
-765.
J. Cerny and O. Kowalski, Classification of generalized symmetric pseudo-Riemannian spaces
of dimension n = 4, Tensor N.S. 38 (1982), 256-267.
T. Chave and G. Valent, Quasi-Einstein metrics and their renormalizability properties, Helv.
Phys. Acta. 69 (1996) 344-347.
T. Chave, G. Valent, On a class of compact and non-compact quasi-Einstein metrics and
their renormalizability properties, Nuclear Phys. B. 478 (1996) 758-778.
K. De and U. C. De, Riemann solitons on para-Sasakian geometry, Carpathian Mathematical
Publications, 14 (2)(2022), 395-405.
K. De, U.C. De, A note on almost Riemann Solitons and gradient almost Riemann Solitons,
Afr. Mat. 33, 74 (2022). https://doi.org/10.1007/s13370-022-01010-y.
U. C. De, A. Sardar, and A. Sarkar, Some conformal vector fields and conformal Ricci solitons
on N(k)-contact metric manifolds, AUT J. Math. Com., 2 (1) (2021), 61-71.
B. De Leo and R. A. Marinosci, Homogeneous geodesics of four-dimensional generalized
symmetric pseudo-Riemannian spaces, Publ. Math. Debrecen. 73 (2008), 341-360.
B. De Leo and J. V. Der Veken, Totally geodesic hypersurfaces of four-dimensional generalized
symmetric spaces, Geometriae Dedicata, 159(1)(2012), 373-387.
M. N. Devaraja, H. A. Kumara and V. Venkatesha, Riemannian soliton within the frame
work of contact geometry, Quaestiones Mathematicae 44 (2021) 637-651.
L. F. di Cerbo, Generic properties of homogeneous Ricci soliton, arXiv: 0711. 0465v1.
D. H. Friedan, Nonlinear models in 2 + ϵ dimensions, Ann. Physics, 163 (1985), 318-419.
A. Gray, Riemannian manifolds with geodesic symmetres of order 3, J. Differential Geom.,
(1970), 343-369.
R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contemp.
Math. Santa Cruz, CA, 1986, 71, American Math. Soc.
S. Hervik, Ricci nilsoliton black holes, J. Geom. Phys., 58 (9) (2008), 1253-1264.
I. E. Hiricǎ and C. Udrişte, Ricci and Riemann solitons, Balkan J. Geom. Appl. 21 (2) (2016),
-44.
V. G. Kac, Graded Lie algebras and symmetric spaces, Funk. Anal. Prilozen, 2(1968), 93-94.
A. L. Kholodenko, Towards physically motivated proofs of the Poincaré and geometrization
conjectures, J. Geom. Phys., 58 (2) (2008), 259-290.
D. Kotschick and S. Terzić, On formality of generalized symmetric space, Math. Proc. Cambridge Philos. Soc., 134 (2003), 491-505.
O. Kowalski, Generalized symmetric spaces, in: Lectures Notes in Math. Springer-Verlag.
Berlin, Heidelberg, NewYork, 1980.
J. Lauret, Ricci solitons solvmanifolds, J. Reine Angew. Math., 650(2011), 1-21.
T. L. Payne, The existence of soliton metrics for nilpotent Lie groups, Geom. Dedicata,
(2010), 71-88.
M. Sohrabpour, S. Azami, Ricci bi-conformal vector fields on Lorentzian
Walker manifolds of low dimension. Lobachevskii J Math 44, 5437-5443 (2023).
https://doi.org/10.1134/S1995080223120338.
S. Terzić, Real cohomology of generalized symmetric spaces, Fundam, Prikl Mat., 7 (2001),
-157.
S. Terzić, Pontryagin classes of generalized symmetric spaces, Mat. Zametki, 69 (2001),
-621, Transltion in Math. Notes, 69(2001), 559-566.
C. Udrişte, Riemann flow and Riemann wave, Ann. Univ. Vest Timisoara. Ser. Mat. Inf. 48
(1-2) (2010), 256-274.
C. Udrişte, Riemann flow and Riemann wave via bialternate product Riemannian metric,
Preprint arXiv:1112.4279 [math. Ap] (2012).
V. Venkatesha, H. A. Kumara and M. N. Devaraja, Riemann solitons and almost Riemann
solitons on almost Kenmotsu manifolds, International Journal of Geometric Methods in Modern Physics 17 (2020) 2050105.