Geometric properties of some linear operators defined by convolution
Main Article Content
Abstract
Let $\mathcal{A}$ denote the class of normalized analytic functions in the unit disc $ U $ and $ P_{\gamma} (\alpha, \beta) $ consists of $ f \in \mathcal{A} $ so that
$ \exists ~\eta \in \mathbb{R}, \quad \Re \bigg \{e^{i\eta} \bigg [(1-\gamma) \Big (\frac{f(z)}{z}\Big )^{\alpha}+ \gamma \frac{zf'(z)}{f(z)} \Big (\frac{f(z)}{z}\Big )^{\alpha} - \beta\bigg ]\bigg \} > 0. $
In the present paper we shall investigate the integral transform
$ V_{\lambda, \alpha}(f)(z) = \bigg \{\int_{0}^{1} \lambda(t) \Big (\frac{f(tz)}{t}\Big )^{\alpha}dt\bigg \}^{\frac{1}{\alpha}}, $
where $ \lambda $ is a non-negative real valued function normalized by $ \int_{0}^{1}\lambda(t) dt=1 $. Actually we aim to find conditions on the parameters $ \alpha, \beta, \gamma, \beta_{1}, \gamma_{1} $ such that $ V_{\lambda, \alpha}(f) $ maps $ P_{\gamma}(\alpha, \beta) $ into $ P_{\gamma_{1}}(\alpha, \beta_{1}) $. As special cases, we study various choices of $ \lambda(t) $, related to classical integral transforms.Article Details
How to Cite
Aghalary, R., Ebadian, A., & Shams, S. (2008). Geometric properties of some linear operators defined by convolution. Tamkang Journal of Mathematics, 39(4), 325–334. https://doi.org/10.5556/j.tkjm.39.2008.6
Issue
Section
Papers