Number of zeros of a polynomial in a given domain

Authors

  • A. Ebadian Department ofMathematics, Faculty of Sciences, Urmia University, Urmia, Iran.
  • M. Bidkhamandm Department ofMathematics, Faculty of Natural Sciences, Semnan University, Semnan, Iran.
  • Eshaghi Gordji Department ofMathematics, Faculty of Natural Sciences, Semnan University, Semnan, Iran.

DOI:

https://doi.org/10.5556/j.tkjm.42.2011.1037

Keywords:

Polynomials, Zeros of polynomials

Abstract

In this paper, we obtain results concerning the bound for the number of zeros for the polynomial $p(z)$ which generalize earlier well-known result due to Bidkham and Dewan [{\it On the zeros of a polynomial}, Numerical Methods and Approximation Theory III, Ni\v{s} (1987), 121--128] and Mohammad [{\it On the zeros of polynomials}, Amer. Math. Monthly, 72 (1965), 631-633]. We also obtain result for location of zeros of polynomial $p(z)=\sum\limits_{i=0}^m \frac{a_i}{(i!)^\lambda} z^i+a_nz^n$, $a_n\neq 0$, $0\leq m\leq n-1$, $\lambda\geq 0$.\

References

Lars V. Ahlfors, Complex Analysis, 3rd ed., McGraw–Hill.

H. Alzer, Bounds for the zeros of polynomials, Complex Variables, Theory Appl., 8(2001), 143–150.

M. Bidkhamand K. K. Dewan, On the zeros of a polynomial, NumericalMethods and Approximation Theory III, Niš (1987), 121–128.

M. Dehmer, On the location of zeros of complex polynomials, Jipam, 4(2006), 1–13.

M. Dehmer, Schranken fr die Nullstellen komplexwertiger Polynome, DieWurzel, 8 (2000), 182–185.

N. K. Govil and Q. I. Rahman, On the Eneström–Kakeya Theoryem, TôhokuMath. J., 20(1968), 126–136.

F. Heigl, Neuere Entwicklungen in der Geometrie der Polynome, Jber. Deutsch.Math.–Verein., 65 (1962/63), 97–142.

P. Henrich, Applied and computational complex analysis, Volume I,Wiley Classics Library Edition, (1988).

F. Kittaneh, Bounds for the zeros of polynomials frommatrix inequalities, Arch.Math., 81(2003), 601–608.

S. Lipka, ber die Abgrenzung der Wurzeln von algebraischen Gleichungen, Acta. Litt. Sci. (Szeged), 3 (1927), 73–80.

M.Marden, Geometry of polynomials,Mathematical Surveys. Amer.Math. Soc., Rhode Island, 3 (1966).

Q. G.Mohammad, Location of the zeros of polynomials, Amer.Math.Monthly, 74 (1967), 290–292.

Q. G.Mohammad, On the zeros of polynomials, Amer.Math.Monthly, 72 (1965), 631–633.

N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome, Hochschulbcher fr Mathematik. 55. Berlin, VEB Deutscher Verlag der Wissenschaften, 1963.

Q. I. Rahman, On the zeros of a class of polynomials, Proc. Nat. Inst. Sci. India, 22(1956), 137–139.

Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials. Critical Points, Zeros and Extremal Properties, Clarendon Press, 2002.

D.M. Simeunovic’, On the location of the zeros of polynomials,Math.Morav., 2 (1998), 91–96.

S. K. Singh, On the zeros of a class of polynomials, Proc. Nat. Inst. Sci. India, 19(1953), 601–603.

W. Specht, Die Lage der Nullstellen eines Polynoms,Mathematische Nachrichten, 15 (1956), 353–374

E. C.Westerfield, A new bound for the zeros of polynomials, Amer.Math.Monthly, 40 (1933), 18–23. J. Inequal. Pure and Appl.Math., 7(1) Art. 26, 2006.

Downloads

Published

2011-12-31

How to Cite

Ebadian, A., Bidkhamandm, M., & Gordji, E. (2011). Number of zeros of a polynomial in a given domain. Tamkang Journal of Mathematics, 42(4), 531–536. https://doi.org/10.5556/j.tkjm.42.2011.1037

Issue

Section

Papers