A perturbation technique to compute initial amplitude and phase for the Krylov-Bogoliubov-Mitropolskii method
Main Article Content
Abstract
Article Details
References
M. Shamsul Alam, A unified Krylov-Bogoliubov-Mitropolskii method for solving n-order nonlinear systems, J. Franklin Inst., 339(2002), 239-248.
N. N. Krylov and N. N. Bogoliubov, Introduction to nonlinear mechanics, Princeton University Press, placeStateNew Jersey, 1947.
N. N. Bogoliubov and Yu. Mitropolskii, Asymptotic methods in the theory of nonlinear oscillations, Gordan and Breach, placeStateNew York, 1961.
I. S. N. Murty, B. L. Deekshatulu and G. Krisna, On asymptotic method of Krylov-Bogoliubov for over-damped nonlinear systems, J. Frank Inst., 288(1969), 49--64.
I. P. Popov, A generalization of the Bogoliubov asymptotic methods in the theory of nonlinear oscillation (in Russian), Dokl. Akad. Nauk. SSSR., 111(1956), 308--310.
I. S. N. Murty, B. L. Deekshatulu and G. Krisna, On asymptotic method of Krylov-Bogoliubov for over-damped nonlinear systems, J. Frank Inst., 288(1969), 49--64.
R. A. Rink, A procedure to obtain the initial amplitude and phase for the Krylov-Bogoliubov method, J. Franklin Inst., 303 (1977), 59--65.
M. Shamsul Alam, A modified and compact form of Krylov-Bogoliubov-Mitropolskii unified KBM method for solving an n-th order nonlinear differential equation,Int. J. Nonlinear Mech., 39 (2004), 1343--1357.
M. Shamsul Alam and M. A. Sattar, A unified Krylov-Bogoliubov-Mitropolskii method for solving third-order nonlinear system, Indian J. Pure Appl. Math., 28, 151--167.