On almost Kenmotsu manifolds with nullity distributions

Uday Chand De, Jae Bok Jun, Krishanu Mandal

Abstract


The object of this paper is to characterize the curvature conditions $R\cdot P=0$ and $P\cdot S=0$ with its characteristic vector field $\xi$ belonging to the $(k,\mu)'$-nullity distribution and $(k,\mu)$-nullity distribution respectively, where $P$ is the Weyl projective curvature tensor. As a consequence of the main results we obtain several corollaries.

Keywords


Almost Kenmotsu manifolds; nullity distribution; Weyl projective curvature tensor; Einstein manifold

Full Text:

PDF

References


D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes on Mathematics, Springer, Berlin, 509, 1976.

D. E. Blair, Riemannian geometry on contact and symplectic manifolds, Progr. Math., 203, Birkhauser, 2010.

D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel. J. Math. 91(1995), 189--214.

G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin, 14(2007), 343--354.

G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and nullity distributions, J. Geom. 93(2009), 46--61.

G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds with a condition of $eta$-parallelism, Differential Geom. Appl. 27(2009), 671--679.

A. Gray, Spaces of constancy of curvature operators,Proc. Amer. Math. Soc., 17(1966), 897--902.

J.-B. Jun, U.C. De and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc. 42(2005), 435--445.

K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24(1972), 93--103.

G. Soos, Uber die geodatischen Abbildungen von Riemannaschen Raumen auf projektiv symmetrische Riemannsche Raume, Acta. Math. Acad. Sci. Hungar., 9(1958), 359--361.

Z. I. Szabo, Structure theorems on Riemannian spaces satisfying $R(X,Y)cdot R=0$, the local version, J. Diff. Geom., 17(1982), 531--582.

S. Tanno, Some differential equations on Riemannian manifolds, J. Math. Soc. Japan, 30(1978), 509--531.

Y. Wang and X. Liu, Second order parallel tensors on almost Kenmotsu manifolds satisfying the nullity distributions, Filomat 28(2014), 839--847.

Y. Wang and X. Liu, Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions, Ann. Polon. Math. 112(2014), 37--46.

Y. Wang and X. Liu, On $phi$-recurrent almost Kenmotsu manifolds, Kuwait J. Sci. 42(2015), 65--77.

Y. Wang and X. Liu, On a type of almost Kenmotsu manifolds with harmonic curvature tensors, Bull. Belg. Math. Soc. Simon Stevin 22(2015), 15--24.

K. Yano and S. Bochner, Curvature and Betti numbers, Ann. Math. Stud. 32(1953)




DOI: http://dx.doi.org/10.5556/j.tkjm.48.2017.2272

Sponsored by Tamkang University | ISSN 0049-2930 (Print), ISSN 2073-9826 (Online) | Powered by MathJax