Classification of $h$-homogeneous production functions with constant elasticity of substitution
Main Article Content
Abstract
Article Details
References
J. Acz'el and G Maksa, Solution of the rectangular $mtimes n$ generalized bisymmetry equation and of the problem of consistent aggregation, J. Math. Anal. Appl., 203(2) (1996),104--126.
R. G. Allen and J. R. Hicks, A Reconsideration of the Theory of Value, Pt. II, Economica, 1(1934), 196--219.
K. J. Arrow, H. B. Chenery, B. S. Minhas and R. M. Solow, Capital-labor substitution and economic efficiency, Rev. Econom. Stat., 43(1961), 225--250.
B.-Y. Chen, On some geometric properties of $h$-homogeneous production function in microeconomics, Kragujevac J. Math., 35(3) (2011), 343--357.
B.-Y. Chen, On some geometric properties of quasi-sum production models, J. Math. Anal. Appl., 392(2012), 192--199.
B.-Y. Chen and G. E. Vilcu, Geometric classifications of homogeneous production functions, Math. Social Sci., (submitted).
C. W. Cobb and P. H. Douglas, A theory of production, Amer. Econom. Rev., 18 (1928), 139--165.
P. H. Douglas, The Cobb-Douglas production function once again: Its history, its testing, and some new empirical values, J. Polit. Econom., 84(5) (1976), 903--916.
W. Eichorn, Characterization of CES production functions by quasilinearity, in Production Theory (W. Eichorn, R. Henn, O. Opitz and R. W. Shephard eds.), Springer-Verlag, pp. 21--33, 1974.
J. Filipe and G. Adams, The Estimation of the Cobb Douglas function, Eastern Econom. J., 31(3) (2005), 427--445.
J. R. Hicks, Theory of Wages , London, Macmillan, 1932.
L. Losonczi, Production functions having the CES property, Acta Math. Acad. Paedagog. Nyh'ai. (N.S.) 26(1) (2010), 113--125.
D. McFadden, Constant Elasticity of Substitution Production Functions, The Review of Economic Studies, 30(2) (1963), 73--83.
S. K. Mishra, A brief history of production functions, IUP J. Manage. Econom., 8(4) (2010), 6--34.
B. Nyul, Production functions and their characterizations, Alk. Mat. Lapok, 26(2) (2009), 351--363.
F. Stehling, Eine neue Charakterisierung der CD- und ACMS-Produktiosfunktionen, Operations Research-Verfahren, 21(1975), 222--238.
A. D. Vilcu and G. E.Vilcu, On some geometric properties of the generalized CES production functions, Appl. Math. Comput., 218(1) (2011), 124--129.
G. E. Vilcu, A geometric perspective on the generalized Cobb-Douglas production functions, Appl. Math. Lett., 24(5) (2011), 777--783.