Fitted Numerical Scheme for Solving Singularly Perturbed Parabolic Delay Partial Differential Equations

Main Article Content

Gemechis File Duressa
https://orcid.org/0000-0003-1889-4690
Mesfin Mekuria Woldaregay
https://orcid.org/0000-0002-6555-7534

Abstract




In this paper, exponentially fitted finite difference scheme is developed for solving singularly perturbed parabolic delay partial differential equations having small delay on the spatial variable. The term with the delay is approximated using Taylor series approximation. The resulting singularly perturbed parabolic partial differential equation is treated using im- plicit Euler method in the temporal discretization with exponentially fitted operator finite difference method in the spatial discretization. The parameter uniform convergence analysis has been carried out with the order of convergence one. Test examples and numerical results are considered to validate the theoretical analysis of the scheme.




Article Details

How to Cite
Duressa, G. F., & Woldaregay, M. M. (2022). Fitted Numerical Scheme for Solving Singularly Perturbed Parabolic Delay Partial Differential Equations. Tamkang Journal of Mathematics, 53(4), 345–362. https://doi.org/10.5556/j.tkjm.53.2022.3638
Section
Papers

References

K. Bansal, K. K. Sharma, ε-Uniform numerical technique for the class of time dependent singularly perturbed parabolic problems with state dependent retarded argument arising from generalised Stein’s model of neuronal variability, Differ. Equ. Dyn. Syst., (2016), 1-28.

K. Bansal, K. K. Sharma, Parameter uniform numerical scheme for time dependent singu- larly perturbed convection-diffusion-reaction problems with

general shift arguments, Numer. Algorithms, 75:1(2017), 113-145.

K. Bansal, P. Rai, K. K. Sharma, Numerical treatment for the class of time dependent sin- gularly perturbed parabolic problems with general shift arguments, Differ. Equ. Dyn. Syst., 25:2(2017), 327-346.

C. Clavero, J. L. Gracia and J. C. Jorge, High-order numerical methods for one-dimensional parabolic singularly perturbed problems with regular layers, Numer. Methods Partial Dif- ferential Equations, 21:1 (2005), 149-169.

I. T. Daba and G. F. Duressa, Extended cubic B-spline collocation method for singularly perturbed parabolic differential-difference equation arising in computational neuroscience, International Journal for Numerical Methods in Biomedical Engineering, 37:2 (2021), e3418.

V. Gupta, M. Kumar and S. Kumar, Higher order numerical approximation for time dependent singularly perturbed differential-difference convection-diffusion equations, Numer. Methods Partial Differential Equations, 34(2018), 357-380.

T. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning point, Math. Comput., 32(1978), 1025-1039.

D. Kumar and M. K. Kadalbajoo, A parameter-uniform numerical method for time- dependent singularly perturbed differential-difference equations, Appl. Math. Model., 35:6(2011), 2805-2819.

C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary value prob- lems for differential-difference equations III. Turning point problems, SIAM J. Appl. Math., 45:5(1985), 708-734.

C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. V. Small shifts with layer behavior, SIAM J. Appl. Math., 54:1(1994), 249-272.

J. D. Murray, Mathematical Biology, Springer, Berlin, 1993

J. D. Murray, Mathematical Biology I: An Introduction, Springer, New York, 2002

M. Musila, P. Lánskỳ, Generalized Stein’s model for anatomically complex neurons, BioSystems, 25:3(1991), 179-191.

R. E. O’Malley, Singular perturbation methods for ordinary differential equations, Springer, 1991.

V. P. Ramesh and M. K. Kadalbajoo, Upwind and midpoint upwind difference methods for time-dependent differential difference equations with layer behavior, Appl. Math. Comput., 202:2(2008), 453-471.

R. N. Rao and P. P. Chakravarthy, Fitted Numerical Methods for Singularly Perturbed 1D Parabolic Partial Differential Equations with Small Shifts Arising in the Modeling of Neu- ronal Variability, Differ. Equ. Dyn. Syst., (2017), 1-18.

H. G. Roos, M. Stynes and L. R. Tobiska, Numerical methods for singularly perturbed dif- ferential equations, Springer Science & Business Media, 2008.

M. Shivhare, P. C. Podila, H. Ramos and J. Vigo-Aguiar, Quadratic B-spline collocation method for time dependent singularly perturbed differential-difference equation arising in the modeling of neuronal activity, Numer. Methods Partial Differential Equations, (2021), In press.

R. B. Stein, A theoretical analysis of neuronal variability, Biophys. J., 5:2(1965), 173-194.

R. B. Stein, Some models of neuronal variability, Biophys. J., 7:1(1967), 37-68.

H. Tian, The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag, J. Math. Anal. Appl., 270:1(2002), 143-149.

M. M. Woldaregay and G. F. Duressa, Uniformly convergent numerical method for singu- larly perturbed delay parabolic differential equations arising in computational neuroscience, Kragujevac J. Math., 46:1(2022), 65-84. In Press

M. M. Woldaregay and G. F. Duressa, Parameter uniform numerical method for singularly perturbed parabolic differential difference equations, J. Nigerian Math. Soc., 38:2(2019), 223-245.

M. M. Woldaregay, W. T. Aniley and G. F. Duressa, Novel Numerical Scheme for Singularly Perturbed Time Delay Convection-Diffusion Equation, Advances in Mathematical Physics, 2021(2021), 1-13.