Adaptive mesh extended cubic B-spline method for singularly perturbed delay Sobolev problems
Main Article Content
Abstract
The purpose of this paper is to develop a robust numerical scheme for a class of singularly perturbed delay Sobolev (pseudo-parabolic) problems that have wide application in various branches of mathematical physics and fluid mechanics.
For the small perturbation parameter, the standard numerical schemes for the solution of these problems fail to resolve the boundary layer(s) and the oscillations occur near the boundary layer. Thus, in this paper to resolve the boundary layer(s), im-
plicit Euler scheme for the time derivatives on uniform mesh and extended B-spline basis functions consisting of free parameter λ are presented for spatial variable on Bakhvalov type mesh. The stability and uniform convergence analyisis of the pro
posed method are established. The error estimation of the developed method is shown to be firts order accurate in time and second order accurate in space. Numerical exprementation is carried out to validate the applicability of the developed
numerical method. The numerical results reveals that the computational result is in agreement with the theoretical estimations
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
A.B. Vasilieva, Asymptotic methods in the theory of ordinary differential equations containing small parameters in front of
the higher derivatives, USSR Comput. Math. & Math. Phys., textbf{3}(1963),823–-863.
S.L. Cheru, G.F.Duressa, and T.B.Mekonnen, Numerical integration method for two-parameter singularly perturbed time delay parabolic problem, Front. Appl. Math. Stat,textbf{10}(2024),1414899.
G. M. Amiraliyev & Y. D. Mamedov, Difference schemes on the uniform mesh for SP pseudo-parabolic equations, Turkish Jou.of Math., textbf{19(3)}(1995), 207--222.
A. B. Chiyaneh, & H. Duru, On adaptive mesh for the initial boundary value singularly perturbed delay Sobolev problems. Numer. Methods for PDEs, textbf{36(2)}(2020),228--248.
A. B. Chiyaneh, &H. Durus, Uniform difference method for SP delay Sobolev problems. Quaestiones Mathematicae, textbf{43(12)}(2020), 1713--1736.
H. Duru, Difference schemes for the singularly perturbed Sobolev periodic boundary problem, Appl. math. and comput.,textbf{ 149(1)}(2004), 187--201.
C. Clavero, J. Jorge & F. Lisbona, Uniformly convergent schemes for SPPS combining alternating directions and exponential fitting techniques, Appliat. advanc. comput. methods for boundary and interior layers,(1993) pages 33--52.
I. T. Daba and G. F. Duressa, Extended cubic B-spline collocation method for SPP differential-difference equation arising in computational neuroscience. I. J. Numer. methods in biome. engin., textbf{37(2)}(2021), e3418.
F. W. Gelu, and G. F.Duressa, A uniformly convergent collocation method for singularly perturbed delay parabolic reaction-diffusion problem, Abstr. Appl. Anal, pp.,(2021, March),1--11.
D.Kumar and P.Kumari, A parameter-uniform scheme for singularly perturbed partial differential equations with a time lag, Numer. Methods Partial. Differ. Equ., textbf{36(4)}(2020), 868--886 .
T.C.Hall, On error bounds for spline interpolation. J. Approx. Theory,textbf{ 1(2)}(1968),209--218.
M. Amrein & T. P. Wihler, An adaptive space-time Newton Galerkin approach for semilinear singularly perturbed parabolic evolution equations. MA J. Numer. Anal., textbf{37(4)}(2017), 2004--2019.
R. E. Ewing, Numerical solution of Sobolev partial differential equations,SIAM J. Numer. Anal., textbf{12(3)}(1975), 345-363.
H. Gu, Characteristic finite element methods for nonlinear Sobolev equations, Appl. Math. Comput., textbf{102(1)}(1999), 51-62.
I.Amirali, Analysis of higher order difference method for a pseudo-parabolic equation with delay.Miskolc Math. Notes, textbf{20(2)}(2019), 755--766.
I.Amirali & G. M. Amiraliyev, Three layer difference method for Sobolev equation with delay,J.Comput. Appl. Math.,textbf{401}(2022), 113786.
G. M.Amiraliyev, E. Cimen, I.Amirali & M.Cakir, High-order finite difference technique for delay pseudo-parabolic equations, J. Comput. Appl. Math.,textbf{ 321}(2017),1--7.
C. Zhang and Z.Tan, Linearized compact difference methods combined with Richardson extrapolation for nonlinear delay Sobolev equations, Commun. Nonlinear. Sci. Numer. Simul.,textbf{ 91}(2020), 105461.
N. H. Nhan, T. T. M.Dung, L. T. M.Thanh, L. T. P.Ngoc, and N. T.Long, A High-Order Iterative Scheme for a Nonlinear Pseudo parabolic Equation and Numerical Results,Math. Probl. Eng., textbf{2021}(2021), 1--17.
H.Di, Y.Shang & X. Zheng, Global Well-Posedness for a Fourth Order Pseudo-Parabolic Equation with source term, Disc. Cont. Dyn-S,textbf{21(3)}(2016).
P. Farrell, A.Hegarty, J. M. Miller, E. O'Riordan, and G. I.Shishkin, Robust computational techniques for boundary layers. CRC Press(2000).
G. M.Amiraliyev, H.Duru, & I. G.Amiraliyeva, A parameter-uniform method for a Sobolev problem with initial layer, Numerical Alg., textbf{44}(2007), 185--203.
B.Gunes, and H.Duru, A second-order difference scheme for the singularly perturbed Sobolev problems with third type boundary conditions on Bakhvalov mesh, J.differ. equ. appl.,textbf{ 28(3)}(2022), 385--405.
B.Gunes and H. Duru, A computational method for singularly perturbed delay pseudo-parabolic Des on adaptive mesh, Int. J. Comput. Math., textbf{1-16}(2023).
D.Arslan, A New Error Evaluation for Singularly Perturbed Problem with Multi-Point Boundary Condition. Comput. Methods for DEs, textbf{8(2)}(2020), 236--250.