THE BEST CONSTANT IN AN INEQUALITY OF OSTROWSKI TYPE

Main Article Content

T. C. PEACHEY
A. MCANDREW
S. S. DRAGOMIR

Abstract




We prove the constant $\frac{1}{2}$ in Dragomir-Wang's inequality [2] is best.




Article Details

How to Cite
PEACHEY, T. C., MCANDREW, A., & DRAGOMIR, S. S. (1999). THE BEST CONSTANT IN AN INEQUALITY OF OSTROWSKI TYPE. Tamkang Journal of Mathematics, 30(3), 219–222. https://doi.org/10.5556/j.tkjm.30.1999.4228
Section
Papers

References

D.S. Mitrinovic, J.E . Pecaric and A. M. Fink, Inequalitite for Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.

S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L1 norm and appli­cations to some special means and some numerical quadrature rules, Tamkang J. of Math 28(1997), 239-244.

S. S. Dragomir, On the Ostrowski's inequality for mappings with bounded variation and applications, RGMIA, Research Report Collection, 2(1999), 73-80.

Most read articles by the same author(s)

<< < 1 2 3 

Similar Articles

You may also start an advanced similarity search for this article.