COMPLETE SURFACES IN $E^3$ WITH CONSTANT MEAN CURVATURE

Authors

  • MEHMET ERDOGAN Department of Mathematics Firat University Elazig Turkey.
  • TAKEHIRO ITOH Institute of Mathematics University of Tsukuba Tsuk.uba-shi 305 lbaraki Japan.

DOI:

https://doi.org/10.5556/j.tkjm.22.1991.4576

Keywords:

unknown

Abstract

We give a classification of surfaces in $E^3$ with constant mean curvature and the Gaussian curvature $K$ not changing its sign around some point at which $K$ vanishes.

References

L. Ahlfors and L. Sario., "Riemann surfaces," Princeton Univ. Press., Princeton, 1960.

S.S . Chern., "An elementary proof of existence of isothermal parameter on a surface", Proc. Amer. Math. Soc. 6 (1955), 771-782.

T. ltoh., "Complete surfaces in E4 with constant mean curvature", Kiidai Math. Sem. Rep. 22 (1970), 150-158.

T. Klotz and R. Osserman, Complete surfaces in E3 with constant mean curvature", Comm. Math. Helv. 41 (1966-67), 313-318.

Downloads

Published

1991-03-01

How to Cite

ERDOGAN, M., & ITOH, T. (1991). COMPLETE SURFACES IN $E^3$ WITH CONSTANT MEAN CURVATURE. Tamkang Journal of Mathematics, 22(1), 79–82. https://doi.org/10.5556/j.tkjm.22.1991.4576

Issue

Section

Papers