ON LYAPUNOV TYPE FINITE DIFFERENCE INEQUALITY

Main Article Content

B. G. PACHPATTE

Abstract




Lyapunov type finite difference inequality is established which in the special case yields implicit lower bound on the distance between consecutive zeros of a nontrivial solution of a second order linear finite difference equation.




Article Details

How to Cite
PACHPATTE, B. G. (1990). ON LYAPUNOV TYPE FINITE DIFFERENCE INEQUALITY. Tamkang Journal of Mathematics, 21(4), 337–339. https://doi.org/10.5556/j.tkjm.21.1990.4678
Section
Papers

References

S. B. Eliason, "A Lyapunov inequality for a certain second order nonlinear differential equation", J. London Math. Soc. 2 (1970), 461-466.

A. M. Fink and D. F. St. Mary, "On an inequality of Nehari", Proc. Amer. Math. Soc. 21 (1969), 640-642.

P. Hartman, Ordinary Differential Equations, John Wiley and Sons, New York, 1964.

M. K. Kwong, "On Lyapunov's inequality for disfocality", J. Math. Anal. Appl. 83 (1981), 486-494.

A. M. Liapunov, Probleme generate de la stabilite du mouvement, Annals of Mathematices Study 17, Princeton University Press, 1949.

B. G. Pachpatte, "A note on Lyapunov type inequalities", Indian J. Pure Appl. Math., 21 (1990), 45-49.

W. T. Patula, "On the distance between zeros", Proc. Amer. Math. Soc. 52 (1975), 247-251.

W. T. Reid, "A generalized Liapunov inequality", J. Differential Equations 13 (1973), 182-196.