Existence of solutions to nonlocal weighted Kirchhoff-type problems via topological degree theory

Main Article Content

Nezha KAMALI

Abstract

This paper investigates a weighted Kirchhoff-type equation driven by the fractional $p(x)-$Laplacian operator. The proposed model captures both nonlocal interactions and variable exponent effects, which naturally arise in several applied contexts. Under suitable structural assumptions, we analyze the associated nonlocal boundary value problem with Dirichlet conditions. By employing topological
degree methods, we prove the existence of weak solutions, thereby extending and enriching existing results on Kirchhoff-type problems involving fractional and variable exponent operators.

Article Details

How to Cite
KAMALI, N. (2026). Existence of solutions to nonlocal weighted Kirchhoff-type problems via topological degree theory. Tamkang Journal of Mathematics. https://doi.org/10.5556/j.tkjm.57.2026.5945
Section
Papers

References

[1] M. Ait Hammou, E. Azroul and B. Lahmi, Existence of solutions for p(x)-Laplacian Dirichlet problem by topological degree, Bull. Transilv. Univ. Bras, ov, Ser. III: Math. Comput. Sci.,11 (2018), 29–38.

[2] M. Ait Hammou, Weak solutions for fractional p(x, ·)-Laplacian Dirichlet problems with weight, Analysis, 42 (2022), 121–132.

[3] M. Ait Hammou, Nonlinear problem involving the fractional p(x)-Laplacian operator by topological degree, Differential Equations and Control Processes, 3 (2024), 1–12.

[4] R. P. Agarwal, E. Azroul, N. Kamali and M. Shimi, On a class of p(x, ·) integro-differential Kirchhoff-type problem with singular kernel, J. Appl. Anal. Comput., 15 (2025), 333–353.

[5] I. Aydin, Weighted variable Sobolev spaces and capacity, J. Funct. Spaces, 2012 (2012), Article ID 132690.

[6] E. Azroul, A. Benkirane, M. Shimi and M. Srati, Three solutions for fractional p(x, ·)Laplacian Dirichlet problems with weight, J. Nonlinear Funct. Anal., 2020 (2020), 1–18.

[7] E. Azroul, A. Benkirane, M. Shimi and M. Srati, On a class of fractional p(x)-Kirchhofftype problems, Applicable Anal., 100 (2021), 383–402.

[8] E. Azroul, N. Kamali and N. Madani, On a singular fractional p(x, ·)-Kirchhoff type problem: variational analysis, J. Pseudo-Differ. Oper. Appl., 16 (2025), Article 84.

[9]E. Azroul, N. Kamali and M. Shimi, Multiple solutions for a variable-order p(x, ·)-Kirchhoff type-problem with weight, Math. Methods Appl. Sci., 48 (2025), 1–21.

[10] E. Azroul, N. Kamali, M. A. Ragusa and M. Shimi, Variational methods for a p(x, ·)-fractional bi-nonlocal problem of elliptic type, Rend. Circ. Mat. Palermo (2), 74 (2025),1–21.

[11] E. Azroul, N. Kamali, M. A. Ragusa and M. Shimi, Variational methods for a p(x, ·)- fractional bi-nonlocal problem of elliptic type, Rend. Circ. Mat. Palermo (2), 74 (2025), 1–21.

[12] J. Berkovits, Extension of the Leray–Schauder degree for abstract Hammerstein type mappings, J. Differential Equations, 234 (2007), 289–310.

[13] X. L. Fan and D. Zhao, On the spaces Lp(x) and Wm, p(x), J. Math. Anal. Appl., 263 (2001), 424–446.

[14] A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156–170.

[15] I.-S. Kim and S.-J. Hong, A topological degree for operators of generalized (S+)type, Fixed Point Theory Appl., 2015 (2015), Article ID 107.

[16] G. Kirchhoff, Vorlesungen ¨uber mathematische Physik, Vol. 1, Teubner, Leipzig, 1883.

[17] J.-L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284–346.

[18] P. Ochoa, A. Silva and F. Valverde, Existence of weak solutions for the anisotropic p(x)- Laplacian via degree theory, arXiv preprint, arXiv:2411.03123, 2024.

[19] I. Talibi, F. Balaadich, B. El Boukari and J. El Ghordaf, Weak solutions for the fractional Kirchhoff-type problem via Young measures, Tamkang J. Math., to appear.

[20] M. Xiang, B. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021–1041.

[21]J. Zuo, T. An and A. Fiscella, A critical Kirchhoff-type problem driven by a p-fractional Laplace operator with variable s(·)-order, Math. Methods Appl. Sci., 44 (2021), 1071–1085.

Similar Articles

<< < 1 2 3 4 5 6 

You may also start an advanced similarity search for this article.